The Nuclear Imaging Uncertainty Principle. Do Our Nuclear Cameras Really Work?

Richard M Fleming1*, Matthew R Fleming1, Andrew McKusick1,2 and Tapan K Chaudhuri3

1FHHI-OmnificImaging-Camelot, Los Angeles, USA
2Sebec Consulting & Media, Charlotte, USA
3Eastern Virginia Medical School, USA

*Corresponding author:
Richard M Fleming, PhD, MD, JD, FHHI-OmnificImaging-Camelot, Los Angeles, CA, USA

Received: May 22, 2019
Published: July 11, 2019
Volume: 01; Issue: 02

To Cite This Article:

Keywords: PMTVDm©℗, BEST imaging ©℗, Breast cancer, Heart disease, Nuclear camera calibration

Introduction

In 1927, Heisenberg [1], published his “Uncertainty principle” which in brief states that it is impossible to simultaneously know both the position and momentum of an electron or any other particle with any degree of accuracy or “certainty”. To define the location of an electron required interaction with it. This interaction would result in movement of the electron and as a result, would move the electron. The best one could achieve is knowledge of where the electron was at the time of interaction.

The first utilization of nuclear isotopes for medical imaging and evaluation of heart disease was conducted by Blumgart [2] in February of 1925 when he injected himself with Radium C, which emits alpha and beta particles and gamma rays. As such, the Geiger counter chamber developed by Blumgart & Yens [2], could detect the passage of blood carrying the radium. The studies would first be published in 1927 and become known as “circulation time” and would dynamically define myocardial contractility by comparing changes in count activity over time.

In 1957, Anger [3] demonstrated the first gamma camera designed to detect the emission of radioactive decay emanating from the patient. In essence, a modern Geiger counter which could be held some distance from the chest to measure isotope decay while present in cardiac tissue. The decay (scintillation) is detected by the camera after being absorbed by the camera crystal (usually sodium iodide) with the subsequent release of an electron from the sodium iodide, which is subsequently detected by a photomultiplier (PMT) tube as shown in Figure 1. These scintillations are tallied by the computer. These anger cameras have been used to image various regions of the body using radioactive isotopes which are known to localize to the tissues in question. For cardiac...
disease this has primarily included thallium-201 and technetium-99m. The utilization of these cameras have been assumed to be able to detect changes in isotope availability by "counting" the amount of radioactivity as described and translating this information into a black and white or color format image for human viewing and interpretation of disease. However, to the best our knowledge, no such experimentation has been carried out to determine if today’s gamma cameras can in fact accurately count radioactive decay required for image comparison. This quantification is necessary to compare redistribution of isotopes and to avoid errors in interpretation. This requires more than simply the ability to produce pictures of different brightness; it requires actual ability to measure differences in isotope decay (scintillation), as did Blumgart's Geiger counter. This is the basis of devices used to determine human radiation exposure and is a requirement in diagnostic imaging. To investigate this we conducted a series of experiments with known quantities of Tc-99m and utilized two different matrixes commonly employed in clinical cardiology to determine if the cameras are able to accurately measure radioactive decay.

The acquisition of technetium-99m isotopes for diagnostic purposes results from the radioactive decay of the parent compound (Molybdenum) to the daughter compound (technetium-99m) as shown in Figure 2. The half-life for technetium-99m is 6.01 hours as shown in Figure 3. Each sample of technetium-99m contained 10.1 mCi (37.37 mBq) of radioactive compound. Each sample was sealed in a syringe preventing any leakage of material. If the cameras are able to accurately measure isotope decay, the camera should reveal a 10% reduction in count activity from the first image and the second image taken 55 minutes later.

![Figure 2: Decay of Technetium-99m to Technetium-99.](image)

The production of technetium by bombardment of a molybdenum atom with deuterons was first documented by Carol Perrier and Emilio Segre in 1937. Technetium-99m (meta stable) decays to Technetium 99 through the release of a gamma (photons) rays of 140.5 keV (98.6%) and 142.6 keV (1.4%) as shown. The final result is Technetium-99 (Tc-99) with a half-life of 210,000 years.
Figure 3: Radioactive decay curve of Technetium-99m. The radioactive decay of technetium-99m is shown. The physical half-life for Tc-99m is 6.01 hours. Given this information, one can calculate that over the course of 55 minutes there is a 10% decay of the isotope. In clinical studies looking at sestamibi redistribution to determine ischemia4,5 the initial stress imaging is made at 5 minutes with the second imaging at 60 minutes.

Utilizing a Philips Forte Dual head single photon emission computed tomography (SPECT) camera with general all purpose collimators, the camera was set to (1) a 64 x 64 matrix and (2) 128 x 128 matrix settings. As shown in Figure 4, the greater the matrix (pixel) settings per image, the greater the localization of isotope emission within the field of view and the sharper the image. However, for each pixel, there are surrounding septa of lost information forming the border of the pixel. The question is whether the increase in image “sharpness” comes at the expense of “accuracy” of radioactive isotope count activity, which is the basis for image comparisons.

Figure 4: The greater the number of pixels, the “sharper” the image.

Figure 4A: Increasing the number of pixels increases image “sharpness”.
Figure 4B: Fewer pixels reduce “sharpness” while increasing scintillation detection.

Figure 4C: More pixels increase image “sharpness” but at the expense of scintillation detection. An effort to improve image “sharpness” is derived by increasing the number of pixels in a given field. Cameras set up with a 64 x 64 matrix (pixel) resolution, will result in a more blurred image, while a matrix of 128 x 128 (pixels) will increase image “sharpness.” As seen in Figure 4B and 4C, the cost of increasing “sharpness” occurs at the cost of more septa separating each pixel, which reduces the area available for information acquisition. Each septa itself is excluded from acquiring information on radioactive decay, exchanging information for sharpness.

Figure 5A: 64 x 64 matrix, initial acquisition.

Figure 5B: 64 x 64 matrix, acquisition made 55 minutes after initial acquisition.
As shown in Figure 5A, the initial radioactive count obtained over 5 minutes from a syringe of 37.37 mBq of radioactive tc-99m using a 64 by 64 pixel matrix was 1,405,721. Using the same matrix and imaging 55 minutes later, Figure 5B shows the counts collected over 5 minutes were 1,251,359. The decay curve for tc-99m means that there should have been a 10% reduction in count activity. In this instance, there was a 10.98% reduction in measured isotope activity.

When efforts to improve image “sharpness” were made by changing the matrix to 128 x 128, Figure 5C shows the initial count activity measured over 5 minutes was 3,473,001. When the syringe was reimaged 55 minutes later using the 128 x 128 matrix, the counts collected over a 5 minute period, as shown in Figure 5D, were 2,966,394. While there was an increase in actual radioactive count activity compared with the 64x64 matrix, this came at a cost of accuracy with a 14.59% reduction in radioactive count activity. This is 4.68 times the data lost as was seen with the 64 x 64 matrix.

While the visual appearance desired by most clinicians to make diagnostic decisions is important, images can be manipulated to confirm what the diagnostician is looking for.

These adjustments may lead to incorrect conclusions and visual interpretations alone may lead to incorrect conclusions. When done at social gatherings, these visual illusions as shown in Figure 6 can be entertaining. When done to determine if someone has ischemic heart disease, such illusions can be more distressing. For that reason, multiple researchers have been trying to develop algorithms, which will reduce this human error. It is impossible to reduce this human error, if part of the error is the result of instrumentation.

These findings have demonstrated that independent of the visual image seen by the clinician, this information is dependent upon the accuracy of the computers ability to detect the radioactive decay of isotope needed to make image comparisons. Like, Heisenberg’s uncertainty principle, this uncertainty principle comes at a cost. The ability to detect the location of the emission of the gamma ray is influenced by the matrix surrounding the acquired image of the heart. This precision of location comes at the cost of lost accuracy as to the number of gamma rays being emitted. Given this spatial limitation (sharpness) versus accuracy, like Heisenberg we are left with a dilemma. Do we sacrifice accuracy for “sharpness” or should we be more concerned with the necessary accuracy required to compare images 4-7, thereby reducing errors made in evaluation of the extent of ischemic heart disease?
Funding

There was no research funding required for this paper.

References


